- римановой
- 1) Riemann
2) <geom.> riemannian
лист римановой поверхности — Riemann surface sheet
Русско-английский технический словарь.
лист римановой поверхности — Riemann surface sheet
Русско-английский технический словарь.
ДУБЛЬ РИМАНОВОЙ ПОВЕРХНОСТИ — двулистная накрывающая поверхность W конечной римановой поверхности R. Каждой внутренней точке ставится в соответствие пара точек ри Д. р. п. W;иными словами, над ррасположены две сопряженные точки Д. р. п. ри р. Каждой точке qкрая Rставится в… … Математическая энциклопедия
Модули римановой поверхности — Модули римановой поверхности численные характеристики (параметры), одни и те же для всех конформно эквивалентных римановых поверхностей, в своей совокупности характеризующие конформный класс эквивалентности данной римановой поверхности.… … Википедия
Основная теорема римановой геометрии — Связность Леви Чивиты или связность, ассоциированная с метрикой аффинная связность с нулевым кручением на римановом (или псевдоримановом) многообразии M, относительно которой метрический тензор ковариантно постоянен. То есть аффинная связность… … Википедия
МОДУЛИ РИМАНОВОЙ ПОВЕРХНОСТИ — числен ные характеристики (параметры), одни и те же для всех конформно эквивалентных римановых поверхностей, в своей совокупности характеризующие конформный класс эквивалентности данной римановой поверхности. При этом две римановы поверхности R1… … Математическая энциклопедия
ГОЛОМОРФНОСТИ ОБОЛОЧКА — (римановой) области D наибольшая область H(D), обладающая тем свойством, что всякая функция, голоморфная в D, голоморфно продолжается в Н(D). Задача построения для данной области Dее Г. о. возникает в связи с тем, что в комплексном пространстве… … Математическая энциклопедия
МЕРОМОРФНАЯ ФУНКЦИЯ — одного комплексного переменного в области (или на римановой поверхности W) голоморфная функция в области к рая в каждой особой точке имеет полюс (т. е. изолированная точка множества не имеющего предельных точек в W, и ). Совокупность M(W) всех М … Математическая энциклопедия
ДИФФЕРЕНЦИАЛ НА РИМАНОВОИ ПОВЕРХНОСТИ — дифференциальная форма на римановой поверхности S, инвариантная относительно конформного преобразования локального униформизирующего параметра z=x+iy. Чаще всего встречаются дифференциалы (д.) первого порядка это дифференциальные формы… … Математическая энциклопедия
ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ МНОГООБРАЗИЙ — раздел дифференциальной геометрии, изучающий различные инфинитезималъные структуры на многообразии и их связи со структурой многообразия и его топологией. К середине 19 в. в результате возникновения неевклидовой геометрии Лобачевского,… … Математическая энциклопедия
Риманова геометрия — Не следует путать с геометрия Римана. Риманова геометрия это раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, т. е. гладкие многообразия с дополнительной структурой, римановой метрикой,… … Википедия
Геометрия — (греч. geometria, от ge Земля и metreo мерю) раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Происхождение термина «Г. , что… … Большая советская энциклопедия
Риманова геометрия — многомерное обобщение геометрии на поверхности, представляющее собой теорию римановых пространств, т. е. таких пространств, где в малых областях приближённо имеет место евклидова геометрия (с точностью до малых высшего порядка… … Большая советская энциклопедия